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Abstract 

Foundation species such as mangroves, saltmarshes, kelps, seagrasses, and oysters thrive within 

suitable environmental envelopes as narrow ribbons along the land-sea margin. Therefore, these 

habitat-forming species and resident fauna are sensitive to modified environmental gradients. For 

oysters, many estuaries impacted by sea-level rise, channelization, and municipal infrastructure 

are experiencing saltwater intrusion and water-quality degradation that may alter reef 

distributions, functions, and services. To explore decadal-scale oyster-reef community patterns 

across a temperate estuary in response to environmental change, we resampled reefs in the 

Newport River Estuary (NRE) during 2013-2015 that were previously studied during 1955-1956. 

We also coalesced historical NRE reef distribution (1880s-2015), salinity (1913-2015), and 

water-quality driven shellfish closure boundary (1970s-2015) data to document environmental 

trends that could influence reef ecology and service delivery. Over the last 60-120 years, the 

entire NRE has shifted toward higher salinities. Consequently, oyster-reef communities have 

become less distinct across the estuary, manifest by 20-27% lower species turnover and 

decreased faunal richness among NRE reefs in the 2010s relative to the 1950s. During the 2010s, 

NRE oyster-reef communities tended to cluster around a euhaline, intertidal-reef type more so 

than during the 1950s. This followed faunal expansions farther up-estuary and biological 

degradation of subtidal reefs as NRE conditions became more marine and favorable for 

aggressive, reef-destroying taxa. In addition to these biological shifts, the area of suitable bottom 

on which subtidal-reefs persist (ultimately regulated by up-estuary intrusion of marine waters) 

and support human harvest (driven by water quality, eroding from up-estuary) has decreased by 

>75% since the natural history of NRE reefs was first explored. This “coastal squeeze” on 

harvestable subtidal oysters (reduced from a 4.5-km to a 0.75-km envelope along the NRE’s 
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main axis) will likely have consequences regarding the economic incentives for future oyster 

conservation, as well as the suite of services delivered by remaining shellfish reefs (e.g., 

biodiversity maintenance, seafood supply). More broadly, these findings exemplify how 

“squeeze” may be a pervasive concern for biogenic habitats along terrestrial or marine ecotones 

during an era of intense global change. 

Key words: coastal narrowing; community assembly; ecotones; environmental stress gradients; 

saltwater intrusion; sea-level rise; shellfish closures; water quality 

Introduction 

Predicting responses of ecosystems to global change is bolstered by understanding how the 

distributions of habitat-forming foundation species will shift across depths, elevations, or 

latitudes in response to changes in the position of suitable abiotic (fundamental niche) and biotic 

(realized niche) environmental conditions (Snedaker 1995, Parmesan and Yohe 2003). In 

particular, the global redistribution of more mobile terrestrial and marine taxa, manifest as 

whole-community shifts, may be linked to the distribution and prevalence of specific biogenic 

structures that serve as foraging, mating, refuging, and resting habitats (Asch and Erisman 2018, 

Morley et al. 2018). 

Over the next several decades, the impacts of global and local environmental shifts on biogenic 

habitats and associated communities may be magnified in dynamic coastal and estuarine 

environments where steep physiochemical and biological gradients exist between terrestrial and 

marine biomes (i.e., concentrated over meter-to-kilometer scales; Gunter 1956). For example, in 

response to relative sea-level rise (RSLR), temperate saltmarshes must either accrete vertically or 
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transgress landward to persist (Morris et al. 2002). For saltmarshes otherwise capable of 

landward retreat in response to RSLR, human development/infrastructure can obstruct natural 

migration corridors. As such, these saltmarshes become “squeezed” between rising water on the 

seaward edge and coastal development on the landward margin that truncate the zone of suitable 

environmental niche space (for saltmarshes, primarily vertical position relative to tidal 

inundation; Doody 2004, Pontee 2013). Broadly, the potential for “squeeze” may be a 

fundamentally relevant concern for all coastal biogenic habitats existing along strong 

physiochemical gradients of temperature (rocky intertidal mussels, Barry et al. 1995; kelp, 

Dayton 1985), light (seagrass, Ochieng et al. 2010), dissolved oxygen (oysters, Lenihan and 

Peterson 1998), and storm-generated physical disturbance (coral, Fabricius et al. 2008). 

Estuaries are classically defined as the mixing zones between rivers and the sea; thus, salinity 

gradients are first-order drivers of local floral and faunal distributions (Odum 1988). The eastern 

oyster (Crassostrea virginica) typically occupies subtidal zones within brackish estuarine waters 

and intertidal zones in the lower estuary where salinities are characteristically marine (Bahr and 

Lanier 1981). Brackish water and aerial exposure ultimately provide these bivalves with refugia 

from enemies such as predators, space competitors, and bioeroders across these prominent 

environmental stress gradients (Fodrie et al. 2014, Walles et al. 2016). 

Many temperate estuaries have been significantly modified by local development and global 

change, including pervasive bathymetric modifications to accommodate commercial ports, 

development of an intracoastal waterway network for boating/shipping transit, and marina 

construction, as well as RSLR and human population growth throughout most watersheds 

(Kennish 2002). These activities are profoundly altering salinity and related water-quality 

regimes that may have cascading impacts on biogenic habitats such as oyster reefs. For instance, 
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dredging/channelization generally increases tidal prism, and combined with RSLR can lead to 

saltwater intrusion up estuary (Ralston and Geyer 2019). The Newport River Estuary (NRE), 

North Carolina (NC), USA, is a model system for exploring the consequences of these dynamics 

as many of these anthropogenic alterations define the NRE. Additionally, long-term place-based 

research--often linked to the presence of field stations (Sagarin et al. 1999, Able 2016)--is a 

critical requisite for detailed investigations of multidecadal ecosystem change in response to 

human influences (e.g., fishing, urbanization, climate change). Owning to the extended presence 

of university and government marine labs nearby, studies documenting the distribution and 

natural history of eastern oyster reefs in the NRE date back to the 1880s (e.g., Winslow 1889, 

Grave 1901, 1905, McDougall 1943). In conjunction with these biological reports, there is a 

substantial library of environmental data collected from the NRE over the last 100+ years. 

Regulated by the salinity regime of the NRE at the start of the 20th century, the transition 

between primarily intertidal reefs (lower estuary) to chiefly subtidal reefs (upper estuary) 

occurred 12-km upstream of Beaufort Inlet (the nearest ocean connection) a century ago (Grave 

1901, 1905), and was characterized for both economic and ecologic purposes. Grave (1905) 

postulated that subtidal oyster cultivation was feasible only upstream of this “line” due to 

periodic freshets that limited the distribution of common oyster enemies, such as predatory 

marine gastropods and bioeroders. Additionally, Grave (1901) qualitatively noted the 

enhancement of biodiversity in the NRE due to the distinct invertebrate assemblages supported 

by subtidal versus intertidal reefs. Building from these observations, Wells (1961) sampled both 

subtidal and intertidal oyster reefs of the mesohaline and euhaline (5-35 practical salinity units) 

regions of the NRE and quantified the distribution of 300+ reef-associated fauna across this 

salinity gradient. 
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To assess how oyster-reef communities in the NRE have changed in nature or distribution over 

decadal scales, potentially in response to human-driven salinity shifts, we resampled reefs during 

2013-2015 that were previously sampled in 1955-1956 by Wells (1961). We made direct 

comparisons of reef-associated faunal communities between 1955-1956 and 2013-2015 to 

evaluate taxon- and assemblage-level distributions across the NRE during this six-decade 

interval. We combined these faunal data with multidecadal NRE salinity records to address the 

following questions: (1) Has the structure and distribution of NRE oyster-reef communities 

changed over time? (2) Which faunal groups account for differences among reefs or through 

time? And (3) for any changes we observed across estuary or time, did faunal shifts correspond 

with spatiotemporal patterns of NRE salinity gradients? We also incorporated ancillary data, 

such as presence/absence of intertidal and subtidal reefs during the 1880-2015 period and water-

quality closures throughout the historical record to consider: (4) Has the transition line between 

subtidal and intertidal reefs shifted up or down estuary in response to changes in salinity 

regimes? And (5) how have water-quality closures interacted with the subtidal-intertidal reef 

transition line to determine the extent of NRE bottom suitable for restoration, maintenance, and 

cultivation of subtidal reefs. 

Methods 

Study System and Field Collections 

Despite modifications, the NRE remains a shallow (1-m mean depth at mean low water) 

drowned-river system covering 134 km2 and defined by extensive intertidal mudflat and 

saltmarsh areas (Kirby-Smith and Costlow 1989). The NRE extends 16.5 km from Beaufort Inlet 

to the bayhead delta, receives freshwater from a relatively small watershed (250 km2) via a 15-
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km long main-stem river (~20-m wide), and has a 0.75-m tidal range (Ensign et al. 2013). In 

historical surveys, subtidal reefs dominated the upper 4.5 km of the NRE across broad shallow 

flats, although the crests of these reefs could/can infrequently (as a proportion of total reef 

extent) extend intertidally along raised bars given the tidal range in this section of the NRE 

(Winslow 1889, Grave 1901, 1905). Conversely, intertidal reefs with shallow subtidal flanks 

dominated the lower 12 km. Wells (1961) sampled oyster-reef-associated communities at five 

sites throughout the NRE during 1955-1956, with the specific focus of relating the composition 

and distribution of fauna with salinity. In the lower, euhaline portion of the estuary (based on 

measurements made at the time of study), Wells (1961) sampled Shark Shoal (SS) and Pivers 

Island (PI)(Fig. 1). In the polyhaline NRE, Wells (1961) sampled Gallants Point (GP) and White 

Rock (WR)(Fig. 1). Near the mesohaline-polyhaline transition in the upper NRE, Wells (1961) 

sampled Cross Rock (CR)(Fig. 1). We conducted visits to all reefs specifically described in 

Winslow (1889), Grave (1905), and Wells (1961) to qualitatively determine if reefs remained 

extant as of 2013 (Table 1). Since Wells (1961), the SS and GP sites have been dramatically 

altered with near-total loss of oyster reefs: SS has been transformed into Radio Island via dredge-

spoil deposits from the adjacent channel serving the Port of Morehead City, while GP is now 

occupied by multiple boat marinas and a bridge span over the former oyster-reef sites (Table 1). 

Therefore, we focused our 2010s sampling revisits on Wells’ (1961) PI, WR, and CR sites, 

which nearly span the entire NRE (Fig. 1). Based on our interpretation of Wells’ (1961) site 

descriptions, the specific patch reef he sampled for WR was absent at the time of our 2013-2015 

revisits; therefore, we moved 1 km to the south-southwest to sample a comparable reef in the 

middle region of the estuary termed White Rock Replacement (WRR)(Fig. 1). 
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To sample oyster-reef associated communities, Wells (1961) employed a simple sampling 

methodology: “During each station visit, a gallon [3.78 liter] jar was filled with oysters, their 

associates, and shell. An effort was made to collect from each of the minor variations in the 

habitat, such as tidal zones, and to have the sample reflect the faunal diversity of the bed.” 

During 1955-1956, Wells (1961) collected 13, 6, and 15 samples at PI, WR, and CR, 

respectively. Collections from PI and CR spanned all seasons, while WR collections were made 

only during summer (Table 1). Samples were returned to the laboratory, where Wells (1961) 

identified all fauna at the lowest taxonomic level possible, which was ultimately published as a 

taxon-specific presence-absence matrix across reefs and over time. To generate data comparable 

with Wells (1961), we followed the same collection approach and collected material from the 

reef crest down to the reef base (including subtidal fringe as possible) to capture faunal 

composition and diversity on each reef. We also collected a comparable number of samples as 

did Wells (1961): 16 trips to both PI and CR that spanned all seasons, and 14 trips to WRR 

spanning all seasons (Table 1). Generally, 2013-2015 sampling followed a bimonthly schedule (a 

single 3.78-liter sample per reef per interval), with some deviations due to factors such as storm 

events (e.g., Hurricane Arthur in 2014). Similarly, sampling during 1955-1956 occurred 

coincident with storm landfalls (Hurricanes Connie, Diane, and Ione 1955)(Wells 1961). All 

2013-2015 samples were transported to the laboratory where we identified fauna to the lowest 

taxonomic level possible. 

Historical Records of Salinity, Water Quality Closures, and Reef Longevity 

Given the central role of salinity in regulating across-estuary distributions of reef types 

(subtidal versus intertidal) and associated fauna (reviewed in Baggett et al. 2015, Walles et al. 

2016), we explored if and how salinity gradients have shifted in the NRE over time by 
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coalescing a 1913-2015 time series from multiple published and regulatory agency sources. To 

leverage these historical salinity data and provide greater context for our faunal investigations, 

we evaluated all known records taken from within 0.5 km of PI, WR/WRR, or CR reefs 

(separately for each site). For PI, sources included: (1) Hoyt (1920), who reported monthly 

salinity recordings during 1913-1914 (N=42). (2) Wells (1961), who reported monthly salinity 

observations during 1955-1956 (N=124 across all sites). (3) The North Carolina Division of 

Marine Fisheries Shellfish Sanitation (NCDMFSS) program, which provided point-measure 

salinities at fixed NRE sampling sites during 1965-2015 (N=1900 across all sites) (NCDEQ 

2021). Coarsely, NCDMFSS sampling near each reef site followed a biweekly schedule, 

although sampling frequency ranged from 0-60 observations in any given year based on 

management needs and weather patterns throughout the survey. And (4) the present study, which 

provided point-measure salinities taken during faunal sampling efforts at each reef site (N=44 

across all sites). For WR/WRR and CR, salinity data were limited to sources 2-4 as described 

above. We could not completely standardize these salinity data in terms of sampling seasonality, 

storm events, diel periodicity, and water-level context. As a check against potential biases 

associated with this low degree of standardization, we also explored salinity patterns in the NRE 

using only the NCDMFSS database. Conclusions drawn from that more-standardized subset of 

salinity data regarding spatiotemporal patterns are entirely consistent with conclusions drawn 

from the complete, coalesced NRE salinity record. 

NCDMFSS also provided records regarding the boundaries of permanent shellfish harvest 

closure areas in the upper NRE in response to changes in water quality over time. These closures 

are mandated by the Food and Drug Administration when counts of indicator fecal coliform 
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bacteria exceed a geometric mean of 14 most probable number (MPN) per 100 ml or a 90th 

percentile reading >43 MPN per 100 ml (National Shellfish Sanitation Program 2017). 

Statistical Analyses 

We used several multivariate statistical approaches to examine patterns in oyster-reef 

associated faunal communities across the NRE in the 1950s and 2010s. All multivariate analyses 

were based on the presence/absence of taxa in individual samples. For Wells (1961) to include a 

species in his publication, that taxon had to be present in ≥20% of all samples. To achieve as 

accurate comparison as possible, we also excluded ‘rare’ or transient taxa observed in <20% of 

samples collected during 2013-2015. To not overestimate differences between the 1950s and 

2010s, however, all species reported by Wells (1961) were included in the 2013-2015 database 

regardless of their occurrence frequency in our sampling. Oysters were themselves excluded 

from the community analysis because they were present in every sample, and thus would have no 

impact on multivariate differences among communities. To avoid reporting spurious differences 

between communities over time driven by differences in taxonomic expertise among researchers 

or shifts in accepted phylogenic relationships at the species or genus level, we conducted all 

analyses at the family level, except Actiniara (anemones) and Nemertea (ribbon worms), which 

were grouped at the Order and Phylum levels, respectively. At this resolution, we are confident 

that faunal identities were conserved over time. 

To evaluate evidence of statistical differences among samples, we used a crossed permutational 

MANOVA (PERMANOVA) with NRE site (PI, WR/WRR, CR), period (1950s, 2010s), and 

site*period as fixed factors. PERMANOVA post-hoc procedures were used to evaluate pairwise 

differences as necessary based on statistical results in PERMANOVA. To determine which 

families were driving differences among NRE sites and between study periods, we calculated 
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similarity percentages (SIMPER) among samples. We also used nonmetric multidimensional 

scaling (nMDS) of reef-associated faunal presence/absence to explore similarity in samples 

collected across the NRE during 1955-1956 and 2013-2015. Environmental and temporal 

variables of salinity, Julian day (a proxy for seasonal effects), and year were fitted to the data 

using ENVFIT to determine how these variables correlated with observed community groupings 

in nMDS space. The salinity value assigned to a particular sample was taken from the 

corresponding spot measures taken by Wells (1961) or our research team at the time of sampling 

at each reef. 

To assess community turnover (beta-diversity) at multiple scales, we calculated multivariate 

dispersions for within-reef samples, across the NRE, and between study periods (Anderson et al. 

2006). To further quantify taxonomic turnover among NRE sites (i.e., beta-diversity across PI, 

WR/WRR, CR) as an indicator of the strength of environmental/community gradients across 

these reefs and through time, we calculated Jaccard distances (1-Jaccard index) for all PI-

WR/WRR, PI-CR, and WR/WRR-CR pairwise combinations of samples collected in the 1950s 

and 2010s, with time periods handled separately. Using each sample-by-sample dissimilarity 

score as a replicate for site-pair comparisons, we assessed statistical differences in between-site 

turnover during the 1950s versus the 2010s using the Mann-Whitney U test (separate tests for PI 

versus WR/WRR, PI versus CR, WR/WRR versus CR). This nonparametric approach was used 

because variances of site-versus-site Jaccard scores were heteroscedastic between study periods 

for all three site-pair comparisons. 

To further evaluate the statistical correlation between NRE salinity gradients and the level of 

taxonomic turnover across reefs, and through time, we conducted a single Mantel test. This 

correlation paired two variables drawn from separate but identically structured matrices (i.e., 
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site-pair*period): Jaccard dissimilarity in faunal communities and euclidean differences in mean 

salinities across sites and time (i.e., 1950s versus 2010s). Mean salinities for each site*period 

were calculated from the replicate point-based measurements taken during each sampling visit at 

each site in Wells (1961) or the present study, separately. 

To evaluate multidecadal salinity patterns across the NRE, we calculated annual minimum, 

maximum, and mean (as possible) salinities from monthly values provided by each data source 

for PI, WR/WRR, and CR. For PI, least-squares regressions were conducted for annual minimum 

maximum, and mean salinities during 1913-2015. For WR/WRR and CR, least-squares 

regressions were conducted for annual minimum, maximum, and mean salinities during 1955-

2015. 

We used the following statistical packages to explore spatiotemporal dynamics of NRE oyster 

reef communities: nMDS , PERMANOVA, SIMPER, ENVFIT, PERMDISP, Jaccard distances, 

and the Mantel test were conducted using the R package, ‘vegan’ version 2.5-7 (Oksanen et al. 

2019). Least squared regressions and Mann-Whitney U tests were conducted using R version 

4.04 (R Core Team 2020). Patterns of water-quality closures and reef persistence through time in 

the NRE did not require quantitative statistical tests. 

Results 

Spatiotemporal patterns of reef-associated fauna 

There were notable differences in NRE reef-associated faunal communities over time. Fewer 

taxa (families or lowest possible taxonomic resolution) of reef-associated fauna were collected in 

2013-2015 (N=36) than in 1955-1956 (N=54). Wells (1961) collected 52, 44, and 33 taxa at PI, 
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WR, and CR, respectively. By comparison, during 2013-2015 we collected 27, 26, and 26 taxa at 

PI, WRR, and CR, respectively. 

Given these community level differences, 1955-1956 and 2013-2015 faunal samples were 

distinct in multivariate space (SIMPER=56% different; PERMANOVA df=1, F=18.67, p<0.001; 

Fig. 2). Indeed, sample year (nMDS axis 1) and salinity (nMDS axis 2), but not Julian day, were 

significantly correlated with community variability (Year: R2=0.700, P<0.001; Salinity: 

R2=0.366, P<0.001; Julian: R2=0.002, P=0.91). Taxa contributing most to the community 

difference between 1955-1956 and 2013-2015 (50% cumulative contribution) were hydrozoa 

(Campanulariidae), bryozoans (Electridae, Victorellidae, and Bugulidae), sedentary polychaetes 

(Sabellariidae and Spionidae), burrowing amphipods (Corophiidae), sessile protists 

(Folliculinidae), anemones (Actiniaria spp.), errant polychaetes (Phyllodocidae and Eunicidae), 

bivalves (Veneridae), Ribbon worms (Nemertea), gastropods (Pyramidellidae), isopods 

(Sphaeromatidae), and parasitic barnacles (Sacculinidae). 

We documented up-estuary movement of several taxa from 1955-1956 to 2013-2015. Four 

families (Tellinid clams, Tubificid worms, Sacculinid barnacles, and Muricid snails) were 

observed at WRR in 2013-2015 that were not at WR in 1955-1956. Notably, Atlantic oyster 

drills (Urosalpinx cinerea, Muricidae), an important predator of oyster spat (Chestnut and Fahy 

1956), were collected in 21% of samples at WRR in 2013-2015 while absent in Wells’ (1961) 

surveys. Wells (1961), however, did record oyster drills in 66% of samples at Gallants Pt., 7-km 

downstream from WRR, and 86% of samples at PI, 10-km downstream from WRR. Together, 

these data indicate an upriver shift in drill distribution. We also documented the up-estuary 

migration of 5 taxa from WR in 1955-1956 to CR in 2013-2015, including Caprellid amphipods 

and Leptocheliids, Venerid clams, and Eunicid and Terebellid polychaetes. 
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   Despite these overarching differences between study periods, some things appeared consistent 

between the 1950s and 2010s. Common reef-associated fauna in the NRE across all sites and 

both study periods included: barnacles, Balanidae (Amphibalanus eburneus); amphipods, 

Melitidae (Melita nitida and Dulichiella appendiculata); xanthid crabs, Panopeidae (Panopeus 

herbstii and Eurypanopeus depressus); Gastropods, Calyptraeidae (Crepidula spp.) and 

Pyramidellidae (Boonea impressa); polychaetes, Nereididae (Alitta succinea and Nereis falsa); 

and Mytilid bivalves (Geukensia demissa and Brachidontes exustus) (Table 2). Spionid 

polychaetes (Polydora websteri) were abundant at all sites across both studies except PI in 1955-

1956 (25% of samples). Anemones (Actiniaria spp.) and Venerids (Mercenaria spp.) were 

similarly abundant at all sites in both studies except CR in 1955-1956 (13.3% and 0%, 

respectively). Notably, PI, WR/WRR, and CR could be distinguished from each other in 

multivariate community space during both 1955-1956 and 2013-2015 (Fig. 2). Moreover, during 

both the 1950s and 2010s (as with sampling overall), community composition was significantly 

correlated with salinity, primarily across nMDS axis 2. Unsurprisingly, PI samples were 

typically associated with higher salinities, CR samples were generally associated with lower 

salinities, and WR/WRR samples fell in between PI and CR extremes.

   Fundamentally related to our core questions, among-site faunal differences for PI, WR/WRR, 

and CR truncated over time. Indeed, between-reef dispersions (mean distance of samples to 

group centroid) during 2013-2015 were 14% smaller than during 1955-1956 (F=0.952, P<0.001). 

Relatedly, 2013-2015 samples/sites appeared to cluster more tightly in nMDS space that was 

correlated with higher salinities, relative to 1955-1956 analogues (Fig. 2). 

These patterns were also clear in species-turnover metrics among reef sites (Fig. 3). Jaccard 

distance between PI and WR in 1955-1956 (52%) was nearly 1.4x greater than PI-versus-WRR 
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distance in 2013-2015 (38%) (U=-6.62, P<0.001). Between PI and CR, Jaccard distance was 

1.25x greater in 1955-1956 (60%) than in 2013-2015 (48%) (U=-7.23, P<0.001). Similarly, WR-

versus-CR Jaccard distance in 1955-1956 (49%) was ~1.3x higher than for WRR-versus-CR in 

2013-2015 (37%) (U=-5.89, P<0.001). Notably, the degree of faunal turnover (Jaccard distances) 

among reefs and over time was significantly correlated with the magnitude of salinity difference 

recorded between reef-sampling events (Mantel R=0.16, P<0.001). 

Salinity, water quality, and reef persistence 

NRE salinity regimes have shifted over multidecadal scales in terms of extremes and averages. 

Across all sites, only PI, the site nearest to Beaufort Inlet, did not experience a shift in annual 

mean and maximum salinities over time (Mean: R2=0.02, P=0.37; Max: R2=0.02, P=0.18); both 

metrics consistently approached full marine salinity throughout the entire record (Fig. 4A). 

Conversely, annual minimum salinities recorded at PI increased notably across the 1913-2015 

time span (R2=0.21, P=0.01), from annual minimum readings <20 ppt in the early-to-mid 20th 

century toward >25 ppt by 2015 (Fig. 4A). At the mid-estuary WR/WRR reefs, annual mean, 

maximum, and minimum salinities all increased across 1955-2015 (Mean: R2=0.26, P<0.001; 

Max: R2=0.20, P<0.01; Min: R2=0.097, P<0.05). Early in the record, annual salinities at 

WR/WRR typically ranged between 10-25 ppt, while by the end of the record salinities 

consistently ranged between 15-30 ppt (Fig. 4B). At CR, our farthest upstream NRE study site, 

annual mean, maximum, and minimum salinities also rose through time, but only mean and 

maximum trends were statistically unambiguous (Mean: R2=0.27, P<0.001; Max: R2=0.21, 

P<0.01; Min: R2=0.07, P=0.07). Salinities ranged between 5-20 ppt early in the record at CR, 

and shifted toward 15-30 ppt by 2015 (Fig. 4C). 
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Prior to the 1970s, the entire 16.5-km (along main stem) NRE was open to oyster harvest. 

Following a failure of the Newport Municipal Sewage Treatment plant in 1969, and subsequent 

standardized water-quality sampling by NCDMFSS, shellfish harvest was permanently 

prohibited just upstream of CR in 1972. This closure line, running perpendicular to the NRE 

main-stem axis, was located 15.5 km from Beaufort Inlet. In 1998, as water-quality testing 

continued, this closure line moved 0.9 km down estuary. In 2005, the closure line moved an 

additional 0.25 km down estuary. Finally, as we were concluding our reef sampling in 2015, the 

closure line moved once more, 0.1 km farther down estuary. By 2016, only the lower 14.25 km 

of the NRE was open to oyster harvest and cultivation. Finally, reefs such as “Green Reef” and 

“Turtle Rock” mapped by Grave (1901), as well as “Shark Shoal”, “Gallants Point”, and “White 

Rock” sampled by Wells (1961) were extirpated by 2013 (Table 1). In addition, across 2013-

2015, the subtidal fringes of Pivers Island no longer matched the spatial extent as described in 

Wells (1961). 

Discussion 

Temperate oyster reefs and associated fauna in the NRE have exhibited remarkable changes in 

composition and distribution during the last 60-120 years. These changes have been driven 

primarily by shifts in underlying abiotic environmental gradients (i.e., salinity). These dynamics 

have occurred coincident with NRE water quality degradation, resulting in a “squeeze” on 

subtidal, harvestable oyster reefs along the river-to-ocean axis. This oyster reef “squeeze” 

phenomena is analogous to the compression of suitable habitat for saltmarsh plants along 

developed estuarine shoreline shorelines in an age of accelerated sea-level rise (Pontee 2013). 

Building from these examples, we stress that “coastal squeeze” is likely to broadly impact 
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shallow-water and intertidal biogenic habitats that exist along steep environmental gradients and 

are subject to multiple anthropogenic perturbations. More broadly, we speculate that the 

distribution and extent of many foundation species existing primarily along ecotones in terrestrial 

or aquatic systems may be relatively sensitive to anthropogenic environmental perturbations. 

The “squeeze” on NRE oyster reefs has manifest in two ways: (1) reef communities along the 

NRE main axis have become less distinct from each other since the 1950s, with between-reef 

faunal turnover (beta-diversity) and whole-estuary richness (alpha-diversity for the entire NRE) 

decreasing over time; and (2) the area within the NRE in which subtidal-reef communities can 

persist (ultimately driven by higher salinity waters intruding at the down-estuary margin) and 

support human harvest (driven by expanding water quality degradation, impinging along the up-

estuary margin) has decreased by >75% since the distribution and natural history of reefs in this 

system were described a century ago (Winslow 1889, Grave 1901). These community shifts 

corresponded with a long-term decrease in NRE environmental heterogeneity (i.e., estuarine 

salinity gradient) that is reported to fundamentally drive spatial community turnover in diverse 

marine and terrestrial contexts (Chase and Myers 2011). Throughout the NRE, reefs have 

become more marine and intertidal in physical nature and faunal composition. Notably, this 

homogenization of reef communities decreased NRE-scale species richness, contrary to the 

paradigm of increased species diversity associated with higher salinities, versus brackish waters, 

in estuarine systems (Odum 1988). 

Without planned manipulative experiments at whole-estuary scales to evaluate (i.e., serially 

discount) a suite of oyster stressors, the links we have drawn between oyster-reef community 

patterns and salinity through time are somewhat correlative by nature. In the context of a broader 

literature that greatly informs our observations, however, we consider it reasonable to 
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acknowledge salinity as a first-order driver of oyster reef dynamics in the NRE. Indeed, for >100 

years the distribution of oyster reefs in the context of salinity regimes has been realized (e.g., 

Winslow 1996; Baggett et al. 2015) with mechanisms documented at physiological (La Peyre et 

al. 2013) through community (reviewed in Bahr and Lanier 1981) levels. Over geologic 

horizons, the seaward-landward migration reefs is also thought to be driven by RSLR and 

salinity regimes (Goff et al. 2015). Moreover, many of the reef-associated community members 

shifting their distribution in the NRE are defined by well-described salinity tolerance envelopes 

that match observed environmental shifts (detailed below). In this regard, the mechanistic link 

we draw between shifts in salinity and reef communities based on long-term observations and 

well-documented organism-environmental relationships is analogous with the direct connections 

made between poleward range shifts and global warming (sensu Morley et al. 2018). 

Furthermore, existing data do not support other known oyster stressors such as disease, 

hypoxia/anoxia, or over-sedimentation as limiting in this system (note, harvest impacts are also 

considered below, separately). Despite active wild-harvest and shellfish farming operations in 

the NRE throughout the last century, there are no reports of pervasive disease outbreaks in this 

system. The NRE is relatively shallow and well mixed, and bottom-water oxygen concentrations 

remain above 6 ml L-1 (>75% saturation) year-round in the mesohaline and euhaline portions of 

the system (Kirby-Smith and Costlow 1989). Finally, high sediment-accumulation rates over the 

last 50 years are confined to the head of the NRE (9.7 mm yr-1) and decrease downstream 

approaching RSLR in the vicinity of CR (<5.0 mm yr-1; Mattheus et al. 2009), and therefore 

would not explain the disproportionate loss of reefs farther down-estuary. 

While we also readily acknowledge the limits and dangers of extrapolating findings from a 

single study system too broadly (Hurlbert 1984), we also emphasize that the basic relationship 
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between salinity and the intertidal-versus-subtidal distribution of eastern oyster reefs is robust 

(Baggett et al. 2015, Walles et al. 2016). Therefore, any system experiencing natural or human-

driven shifts in salinity might be informed by lessons drawn from multidecadal patterns in the 

NRE. In particular, we anticipate that other small drowned-river estuaries and tidal creeks with 

relatively small watersheds and little freshwater input, or estuaries in low-lying coastal plains 

particularly vulnerable to RSLR, are mostly likely to see upstream migration of eastern oyster 

reefs, as those systems are most prone to saltwater intrusion (excluding reverse estuaries). 

Additionally, even some large estuarine embayments, such as San Francisco Bay, are subject to 

saltwater intrusion given the system-specific levels of ocean connectivity and freshwater inflows 

(Cloern and Jassby 2012). Conversely, some estuaries with large watersheds and high freshwater 

inputs, such as Mobile Bay, may see increased frequency, duration, or magnitude of freshets 

(sensu Park et al. 2007) that could potentially drive the area suitable for subtidal reefs seaward. 

Notably, the extent of bottom habitat suitable for subtidal reef persistence in these deeper, river-

dominated systems may be more significantly regulated by the development and expansion of 

low-oxygen conditions (Lenihan and Peterson 1998). 

Multiple taxa contributed to the differences we observed across time and space, indicative of 

major community level changes. For instance, we documented fewer desiccation-intolerant fauna 

during 2013-2015 across the NRE than did Wells (1961) and observed several species with 

distributions shifted up-estuary between sampling in the 1950s and 2010s. For instance, the 

majority (17 of 25) of families that drove community level differences at PI between 1955-1956 

(Wells 1961) and 2013-2015 are characteristically subtidal (Ruppert and Fox 1989), and were 

less frequently observed in recent sampling relative to six decades ago. Most notably, these 

included taxa such as boring sponges (Clionaidae), gastropods (3 families, including oyster 
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drills), mossy and encrusting bryozoans (Bugulidae, Membraniporidae, Schizoporellidae), 

tunicates (Molgulidae), and sedentary polychaetes (Sabellariidae and Terebellidae). Similarly, 10 

out of 23 families that drove community level shifts between WR (1950s) and WRR (2010s) 

were characteristically subtidal, and decreased in abundance over time, including mossy and 

encrusting bryozoans (Bugulidae, Electridae, and Alcyonidiidae), tunicates (Molgulidae and 

Styelidae), hydrozoans (Campanulariidae), and sedentary polychaetes (Sabellidae, Sabellariidae, 

and Serpulidae). 

In practical terms, the loss of subtidal habitat at PI and WR/WRR is a proximate reason for 

both the NRE-wide shifts in community structure between 1955-1956 and 2013-2015, as well as 

the compositional squeezing of reef-associated communities across the NRE over time (i.e., 

decrease in across-NRE beta and entire-NRE alpha diversity). During the 1950s, most intertidal 

oyster reefs in the euhaline NRE also supported subtidal reef skirts that extended to depths ~0.5 

m below mean low water (Wells 1961). While these fringe subtidal reef habitats in the lower 

NRE may have been sourced primarily from dislodged oyster clumps shed from the intertidal 

sections of the reefs (combined with some in situ oyster recruitment/growth), these living 

biogenic structures persisted consistently enough to support subtidal reef-associated fauna, such 

as bryozoans and anemones. As salinity regimes in the lower-to-middle NRE have trended 

higher over time, however, we speculate that marine-adapted predators and pests, such as stone 

crabs (Menippe mercenaria), oyster drills, and Clionid boring sponges, exerted strong predation 

(Chestnut and Fahy 1953) and bioerosion (Lunz 1943) pressures that extirpated subtidal reef 

structure, and subsequently, associated subtidal fauna. Even though the WRR station sampled 

during 2013-2015 was ~0.5 km farther up-estuary relative to the WR reef sampled in the 1950s, 

we did not observe any significant subtidal fringe reef during our repeated, year-round visits to 
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that site. By comparison, Wells (1961) specified that he was able to locate and sample from both 

intertidal and subtidal reef zones at WR. 

Salinity-related shifts in faunal distributions also contributed to the decline in species turnover 

across the NRE over time. In 1955-1956, 10 families had up-estuary limits at WR; but by 2013-

2015, five of those families had expanded their ranges up-estuary to CR. Two of those families, 

Caprellids and Leptochellids, are tightly associated with mossy bryozoans, such as Bugula 

neritina, which themselves are excluded by low salinity (Kitamura and Hirayama 1985). 

Similarly, Eunicid polycheates (Garcês and Pereira 2011) and Venerid clams (Davis and 

Calabrese 1964) both moved up-estuary between the 1950s and 2010s, and generally exhibit low 

fitness at salinities <15 ppt. Thus, the shift in mean salinities at CR from ~16 ppt in 1955-1956 to 

~21 ppt in 2013-2015 would almost certainly reflect a decrease in abiotic stress for those taxa. 

Atlantic oyster drill distribution also shifted up-estuary over the last 60+ years. In 1955-1956, 

drills were not documented farther up-estuary than GP, but during 2013-2015 this species was 

routinely collected at WRR (~7 km up-estuary from GP). Due to the nature of our stratified-

haphazard sampling across reef zones, and since drills typically avoid aerial exposure (Johnson 

and Smee 2014), we suspect drills were collected from the low perimeter of the WRR reef. Still, 

their up-estuary expansion is doubly notable: drills are important low-intertidal and subtidal 

predators and they are limited by salinities <18 ppt (Federighi 1931, Manzi 1970). While our 

statistical analyses operated at the family level, it was also significant that Wells (1961) collected 

the Balanid barnacle Amphibalanus improvisus at CR, while this species was absent during 

2013-2015 throughout the NRE. A. improvisus populations are generally limited to areas with 

salinities <15 ppt (Gordon 1969), which makes this species another potentially important “canary 

in the coal mine” reflecting saltwater intrusion into the upper NRE. 
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As in many human-dominated coastal systems, the drivers of NRE environmental change (e.g. 

salinity) are multifaceted – including channelization, sea-level rise, rainfall, and storm-water 

drainage infrastructure. Mechanical dredging of navigational channels alters coastline 

bathymetry, and in the case of the NRE contributed to an increase in tidal range and tidal prism, 

as well as decreased estuarine water residence time, potentially leading to saltwater intrusion 

(Johnston 1981). To serve the state port in Morehead City, NC (in the lower NRE), Beaufort 

Inlet has been dredged to new depths at least five times since 1911 (Years and depths: 1911, 6.0 

m; 1936, 9.1 m; 1961, 10.7 m; 1978, 12.2 m; and 1994, 13.7 m; ), a cumulative inlet depth 

increase >100% over time (Zervas 2003). Zervas (2004) explored long-term trends in water 

levels across NC, and noted that three locations defined by inlet/channel dredging (Oregon Inlet, 

Beaufort Inlet, Wilmington) saw large and statistically significant increases in tidal ranges, while 

other locations had no such increases. For the Beaufort Inlet - NRE system, this increase in tidal 

range approaches 10 cm since the early 1970s (Zervas 2003), increasing ocean-estuary exchange 

during each tidal cycle. Additionally, to create the port and adjacent ship-turning basin, extensive 

deltaic salt marshes that formerly dampened connectivity between the NRE and ocean have been 

converted in relatively deep open water. Despite important differences in embayment 

size/orientation and tidal regime between systems, dredge/fill activities in Tampa Bay were 

projected to account for a 4-ppt increase in estuarine salinity (Zhu et al. 2015), akin to the long-

term shifts in the NRE (>5 ppt). Exacerbating these changes, RSLR may change whole-estuary 

volume, with increased oceanic influence (i.e. potential saltwater intrusion if bottom bathymetry 

does not keep pace with SLR). Immediately adjacent to PI reefs, the National Oceanic and 

Atmospheric Administration tide station 8656483 revealed an 18-cm increase in mean sea level 

across 1973-2015 (~3.5-mm-yr-1 RSLR; NOAA 2021). Finally, Beaufort Inlet dynamics may 
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have also contributed to the salinity-driven faunal patterns we observed in 2013-2015 (but not 

long-term salinity patterns per se), as Beaufort Inlet widened from 1.15 km in 2010 to 1.75 km in 

2015 (Seymour et al. 2019), furthering the coastal ocean influence in the NRE. 

Alterations to the physical and environmental structure of estuaries also has implications for 

the magnitude and duration of freshwater pulses, called freshets, that are critical in limiting 

predators and pests that attack subtidal oysters (while oysters exhibit greater environmental 

tolerance for these low-salinity events; Bahr and Lanier 1981; sensu Bender et al. 1984). In this 

respect, the long-term increases in mean and minimum salinities in the NRE run counter to 

projected higher annual rainfall (Polsky et al. 2000) and the occurrence of wetter tropical 

cyclones (Paerl et al. 2019) in this region. This disconnect may be explained by the more-rapid 

flushing of major pulse freshets in the NRE over time due to storm-water infrastructure, 

channelization, and RSLR. Following the passage of hurricanes Connie and Diane in August, 

1955 (combined, >400-mm rainfall), salinities throughout the entire NRE were ≤10 ppt for at 

least 14 consecutive days (Wells 1961). This period of reduced salinity was highlighted by Wells 

(1961) to cause some oyster mortality throughout the NRE, but more notably, significant 

reductions in the abundance of oyster drills – including within subtidal fringing reefs near 

Beaufort Inlet (i.e., SS, PI, GP). By comparison, hurricane events during the 2013-2015 sampling 

effort, Dorian (2013, 200 mm), Arthur (2014, 100 mm), Ana (2015, 100 mm) lowered NRE 

salinities by <3 ppt, while those modest effects were completely absent within 2-3 tidal cycles of 

storm passage (Tice-lewis 2018). We conclude that physical modifications of the NRE (e.g., 

channelization/ditching, higher sea levels), combined with the relatively small size of this 

watershed, outweigh the long-term changes in precipitation patterns in regulating local salinity 

regimes. 
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Following these shifts in estuarine environmental envelopes, the net movement of the subtidal-

intertidal transition line appears to be up estuary in the NRE. We estimate that the transition line 

between subtidal (up estuary) and intertidal (down estuary) reefs has shifted from 12 km to 13.5 

km away from Beaufort Inlet. This estimate is based on several lines of evidence, including: the 

magnitude of community shifts at WR/WRR and CR; NRE-wide salinity patterns available from 

the NCDMFSS database (i.e. former and present-day locations of ~ 15 ppt within the estuary); 

current extent of subtidal and intertidal reefs in the NRE; and recent targeted experiments on the 

settlement, growth, and survival of subtidal oysters across the NRE (Sorg 2017). In 2012, Sorg 

(2017) deployed oyster settlement substrates (e.g., oyster shell, marl) at five sites across the 

salinity gradient of the NRE running from near the PI site to up-estuary of the CR site. By 2016, 

Sorg (2017) found that constructed reefs ~1 km up-estuary of the WR/WRR sites exhibited 

substantial oyster mortality and reef degradation after five years due to extensive Cliona celata 

impacts, while two sites near CR demonstrated only modest bioerosion impacts. Additionally, 

constructed reef down-estuary from WR/WRR failed to develop due largely to intense drill 

predation, bioerosion, and other mortalities of juvenile oysters (Sorg 2017). 

Present-day subtidal and intertidal reef distributions in the NRE are likely also impacted by the 

legacy of destructive shellfish harvest (zu Ermgassen et al. 2013). In this context, however, the 

patterns reported in Sorg (2017) are critical in highlighting the first-order importance of 

environmental drivers of oyster reef distributions, as those constructed reefs were exempted from 

harvest pressure. Similarly, Powers et al. (2009) conducted surveys in the waters immediately 

around the NRE, and found that oyster sanctuaries only met conservation success thresholds in 

euhaline regions when reefs were sited intertidally. Even in the absence of destructive harvest, 

subtidal eastern oyster reefs did not, and do not, flourish in NRE regions defined by relatively 
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high salinities. Thus, it seems unlikely that destructive harvest is the primary causal agent for the 

multidecadal patterns of reef distributions we have documented. 

Long-term physicochemical alterations to the NRE have led to a form of coastal “narrowing” 

for subtidal reefs (Pontee 2013), as the envelope of suitable environmental conditions for these 

reefs has migrated into the more constricted “neck” of the NRE. Given the strong preference for 

oysters with a subtidal morphology for human harvest (thicker, more rounded shells, with less 

cementing among oysters), this shift has important economic consequences. Moreover, water-

quality degradation and resultant shellfish harvest closures - encroaching on oysters from the up-

estuary end - have exacerbated the impacts of saltwater intrusion in the NRE regarding the 

benefits these reefs confer for humans. As such, subtidal, harvestable oyster reefs are not just 

experiencing narrowing driven by shifts in their downstream margin; but rather, a “coastal 

squeeze” along both upstream (water quality) and downstream (salinity) margins. While water-

quality related closures do confer some de facto reserve protection for shellfish in the upper 

regions of systems like the NRE, these closures also reduce seafood supply and economic 

opportunities for fishermen. Moreover, there is often reduced incentive for shellfish habitat 

enhancement in closed waters, given the absence of potential direct economic returns related to 

future harvest (Fodrie et al. 2018). Furthermore, water-quality closures in the upper NRE are 

correlated with high sedimentation rates (Mattheus et al. 2009) that can further degrade oyster 

fitness under any conservation or restoration initiatives (Rothschild et al. 1994, Thomsen and 

McGlathery 2006, Beck et al. 2011). 

A century ago, the upper 4.5 km of the NRE was suitable for subtidal reef growth/persistence 

and harvest (Grave 1905). Today, the combination of saltwater intrusion and water-quality 

closures has truncated this zone to a ~0.75-km remnant (along the main axis of estuary, Fig. 1). 

25 



 
 

   

  

    

    

   

     

   

    

    

  

    

   

    

   

        

     

    

       

    

   

    

 

 

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

Extrapolating these shifts forward suggests that the transition line for subtidal-intertidal reefs 

may someday occur up-estuary of the shellfish-closure line, completely eliminating the area of 

the NRE suitable for subtidal reef persistence and harvest. While salinity records and reef 

presence/absence data suggest the up-estuary movement of this transition line over decadal 

scales, we consider it likely that the location of the break between subtidal and intertidal reefs 

may ‘wobble’ in the NRE based on conditions during any few select years. For instance, the 

North Atlantic Oscillation (NAO) is correlated with winter rainfall patterns that should increase 

(positive NAO) or decrease (negative NAO) freshets in the NRE during 3-5-year horizons 

(Ottersen et al. 2001). However, we do not think NAO phase had a major effect on the 

community-level shifts we observed, as both the late 1950s and mid 2010s were defined by 

moderately negative NAO conditions (National Centers for Environmental Information 

[noaa.gov]). Even more sporadically, strong wet storms, such as Hurricane Florence in 2018, 

could temporarily relocate the NRE transition line farther down-estuary if oyster pests are 

extirpated following these major pulse events (sensu Wells 1961). 

As the causes for NRE shifts are multifaceted in nature, so must be the actions to abate or 

reverse “squeeze” on oysters. Limiting saltwater intrusion will likely require increased efforts to 

halt global climate change and associated RSLR (Douglas 1991). We also encourage managers 

to balance the economic drivers of channel/inlet dredging with the suite of environmental costs 

or benefits that these estuarine modifications stimulate – in particular, changes in the amount and 

quality of natural capital or infrastructure. We perceive that during the next decade, improving 

up-estuary water quality may be the most effective means of combatting squeeze on subtidal, 

harvestable oysters. This may be achieved through continued or expanded efforts to reduce non-

point-source pollutants, improve wastewater/stormwater management, and implement low-
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impact development (Kennish 2002, Fodrie et al. 2018). Finally, an important caveat is that 

subtidal reef enhancement projects in the middle and lower NRE may still support oyster 

harvests for a few years before predators, bioeroders, and pests degrade reef productivity, given 

lags between when oysters colonize available substrate and when their enemies subsequently 

recruit to young reefs (Fodrie et al. 2014). In this context, the use of novel, mobile substrates to 

support oyster settlement, survival, and growth could be explored. These mobile substates could 

be periodically transferred upstream of the subtidal-intertidal transition (or just into the intertidal) 

to enhance subtidal reef structure, function, and persistence in the middle and lower NRE. 

As subtidal reefs retreat up-estuary, intertidal reefs are becoming a relatively more dominant 

component of this temperate estuary. Importantly, intertidal reefs are distinct from subtidal reefs 

in terms of the suite and magnitudes of ecosystem services they provide. In addition to being less 

marketable than their subtidal analogues, and owing primarily to their time out of water, 

intertidal reefs can be expected to provide relatively lower water filtration/purification capacity 

(Bahr and Lanier 1981), reduced provision of habitat for mobile nekton (Byers et al. 2015), and 

decreased organic carbon burial (Fodrie et al. 2017). Yet, intertidal reefs may be efficient 

nitrogen sinks (Piehler and Smyth 2011) and be significantly more important in shoreline 

stabilization (Grabowski et al. 2012) relative to subtidal counterparts. While intertidal reefs 

provide their own form of resilience to climate change via their ability to outpace RSLR 

(Rodriguez et al. 2014), it is also notable that reduced diversity of reef types and reef-associated 

fauna at the estuary scale may have complex, poorly understood impacts on ecological resilience 

in estuaries like the NRE (Elmqvist et al. 2003, Stachowicz et al. 2007). Using oyster reefs as a 

model, but applicable to all biogenic habitats that exist along strong environmental gradients, 

these dynamics exemplify how human-driven shifts in key abiotic properties such a salinity, 
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temperature, or water level can have profound effects on coastal ecosystem structure and 

functions. 
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825 Table 1. Summary of Newport River Estuary oyster reef site characteristics. Insights from Grave (1901) are provided to give historical 

826 context to oyster reef sites relevant to the multidecadal analysis. 

Reef Grave      
1901 

Wells 
1955-
1956 

This 
study 
2013-
2015 

Distance 
to Inlet 

(km) 

Reef 
Type 

Aerial 
exposure 
regime 

Wells (1961) 
Months sampled 

Current study 
Months sampled 

Shark Shoal 

Pivers Island 

Gallants 
Point 

Not noted 

Not noted 

Not noted 

Extant 

Extant 

Extant 

Nonextant 

Extant 

Nonextant 

1.8 

3.5 

6.6 

Groin 

Fringing 

Bar 

Intertidal, 
subtidal fringe 

Intertidal, 
subtidal fringe 

Intertidal, 
subtidal fringe 

1955: 7, 8, 9, 10, 11   
1956: 1, 2, 3, 4, 5, 6, 7, 9 

1955: 7, 8, 9, 10, 11   
1956: 1, 2, 3, 4, 5, 6, 7, 9, 10 

1955: 7, 8, 9   
1956: 7, 8, 9   

Not sampled 

2013: 7, 8, 10, 12 
2014: 2, 4, 6, 8, 10     
2015: 1, 3, 5, 7, 10, 10, 
12 

Not sampled 

Green Extant Not noted Nonextant 9.9 Patch Not noted Not sampled Not sampled 

White Rock 

White Rock 
Replacement 

Extant 

Extant 

Extant 

Not noted 

Nonextant 

Extant 

12.5 

13.1 

Patch 

Patch 

Intertidal, 
subtidal 

Intertidal 

1955: 7, 8, 8, 9     
1956: 8, 9 

Not sampled 

Not sampled 

2013: 7, 8, 10, 12 
2014: 2, 4, 6, 8, 10     
2015: 1, 3, 5, 7, 12 

Turtle Rock Extant Extant Nonextant 13.4 Not noted Not noted Not sampled Not sampled 

827 

Lime Kiln 

Cross Rock 

Extant 

Extant 

Not noted 

Extant 

Extant 

Extant 

14.5 

14.7 

Flats 
connected 

to bar 

Flats 
connected 

to bar 

37 

Subtidal, few 
intertidal crests 

Subtidal, few 
intertidal crests 

Not sampled 

1955: 5, 7, 8, 8,  9, 10, 11 
1956: 1, 2, 4, 5, 6, 7, 9, 10     

Not sampled 

2013: 7, 8, 10, 12 
2014: 2, 4, 6, 8, 10     
2015: 1, 3, 5, 7, 10, 10, 
12 



 
 

      

  

   

   

              
                      

        
                                

                                    
                            
                            
                            
                            
                              
                            
                                
                            
                                  
                                
                            
                                  
                                
                                
                              
                                
                            
                                
                                
                               

  

828 Table 2. Oyster-reef associated fauna and their frequencies of occurrence (0-100% scale) in the Newport River Estuary (NRE) during 

829 1955-1956 (Wells 1961) and 2013-2015 surveys. Oyster reefs included Pivers Island (PI), White Rock (WR) or White Rock 

830 Replacement (WRR), and Cross Rock (CR). Taxa reported by Wells (1961) include those in >20% of all NRE samples (five sites), 

831 although 1955-1956 frequency of occurrence may be <20% across the three sites included here. 

1955-1956 2013-2015 1955-1956 2013-2015 
PI WR CR PI WRR CR PI WR CR PI WRR CR 

Taxonomic group Taxonomic group 
ARTHROPODA BRYOZOA 

Amphipoda Cheilostomatida 
Caprellidae 86 33 0 0 0 13 Bugulidae 64 67 20 6 7 0 
Corophiidae 57 67 87 0 14 94 Electridae 29 100 93 0 0 0 
Gammaridae 64 33 20 6 7 6 Membraniporidae 86 17 0 0 0 0 
Melitidae 100 100 93 38 79 88 Schizoporellidae 86 17 0 0 0 0 

Tanaidacea Ctenostomatida 0 0 0 0 0 0 
Leptocheliidae 36 33 0 0 0 13 Alcyonidiidae 21 67 7 0 0 0 

Isopoda Nolellidae 0 33 0 0 0 0 
Sphaeromatidae 21 33 93 13 100 94 Victorellidae 29 33 47 0 0 0 

Decapoda CILIOPHORA 
Diogenidae 36 17 0 6 0 0 Heterotrichea 
Panopeidae 100 67 80 100 100 100 Folliculinidae 93 67 53 0 0 0 

Diptera CLITELLATA 
Tabanidae 0 17 20 6 0 0 Oligochaeta 

Maxillopoda Tubificidae 0 0 0 6 21 44 
Balanidae 93 100 87 81 79 88 CNIDARIA 
Chtamalidae 36 0 0 0 0 0 Anthozoa 
Sacculinidae 0 0 0 44 79 56 Actiniaria spp. 100 33 13 38 50 38 

Pycnogonida Gorgoniidae 57 17 0 0 0 0 
Nymphonidae 29 0 0 0 0 0 Hydrozoa 

Campanulariidae 50 67 47 0 0 0 
832 
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833 Table 2. Continued. 

1955-1956 2013-2015 1955-1956 2013-2015 
PI WR CR PI WRR CR PI WR CR PI WRR CR 

Taxonomic group Taxonomic group 
Table 2. Continued POLYCHAETA 

Errantia 
MOLLUSCA Eunicidae 93 17 0 94 79 6 

Bivalvia Nereididae 100 100 100 100 100 100 
Anomiidae 36 33 7 6 0 0 Phyllodocidae 100 33 13 44 79 19 
Arcidae 21 0 0 0 0 0 Syllidae 64 33 7 6 0 0 
Mytilidae 100 50 100 100 100 100 Sedentaria 
Pholadidae 43 0 0 0 0 0 Capitellidae 71 33 20 6 0 19 
Tellinidae 0 0 0 0 7 19 Sabellariidae 93 50 13 0 0 0 
Veneridae 57 33 0 38 57 75 Sabellidae 86 50 13 13 0 6 

Gastropoda Serpulidae 100 50 27 25 36 13 
Buccinidae 7 0 0 0 0 0 Spionidae 79 50 80 25 64 69 
Calyptraeidae 36 50 13 0 43 25 Terebellidae 79 17 0 13 21 6 
Cerithiidae 57 0 0 0 0 0 PORIFERA 
Columbellidae 93 50 7 0 7 0 Demospongia 
Fasciolariidae 50 0 0 0 0 0 Chalinidae 29 33 0 0 0 0 
Fissurellidae 71 0 0 6 0 0 Clionaidae 100 33 7 6 0 0 
Muricidae 86 0 0 6 21 0 Halichondriidae 93 0 0 0 0 0 
Pyramidellidae 100 33 33 75 79 38 TUNICATA 

NEMERTEA Ascidiacea 
Nemertea spp. 86 50 13 0 21 25 Molgulidae 57 50 20 0 7 0 

PLATYHELMINTHES Styelidae 29 50 7 0 0 0 
Polycladida VERTEBRATA 

Stylochidae 43 17 20 0 0 0 Actinopterygii 
Gobiidae 7 17 20 0 14 44 
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Figure 1. (A) Eastern oyster (Crassostrea virginica) reefs in the Newport River Estuary (NRE) 

sampled for reef-associated fauna during 1955-1956 (Wells 1961) and/or 2013-2015 to assess 

multidecadal stability or change in this temperate coastal system. Reef sites included Shark 

Shoal (SS), Pivers Island (PI), Gallants Point (GP), White Rock (WR) or White Rock 

Replacement (WRR), and Cross Rock (CR). Distinct symbols represent reefs sampled during 

the 1950s only, 2010s only, or 1950s and 2010s. (B-G) Area within the NRE, 1904-present, 

where subtidal oysters can persist and be harvested for human consumption (black shaded 

regions). This area, which has experienced “coastal squeeze” over time, is defined by the 

subtidal-intertidal oyster transition zone (downstream margin) and shellfish harvest closure 

boundaries (upstream margin), and is shown at the time of: (B) Grave’s (1905) and (C) Well’s 

(1961) reef surveys; following (D) water-quality related permanent shellfish harvest closures in 

1972; with downstream extensions of permanent harvest closures in (E) 1998 and (F) 2005. In 

(G) 2016, this area appeared to have truncated further in accordance with reef surveys during 

2013-2015, as well as an additional downstream extension of permanent harvest closures. 

Figure 2. Community composition patterns of reef-associated fauna across the NRE during 1955-

1956 and 2013-2015 based on nonmetric multidimensional scaling (nMDS, stress =0.15). Each 

datum represents a single reef sample, with symbol shapes and colors (open/closed) delineating 

reef identity and sampling period. Environmental factors that correlated with faunal 

community patterns are included as vectors (moving in the direction of increasing “year” and 

“salinity” across nMDS space). Ellipses represent 95% confidence intervals for each of the six 

site*period groups. Oyster reefs included Pivers Island (PI), White Rock (WR) or White Rock 

Replacement (WRR), and Cross Rock (CR). 
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Figure 3. Jaccard distance as a measure of between-reef species turnover (beta-diversity) in 

1955-1956 (Wells 1961) and 2013-2015. Data are presented as means +/- one standard 

deviation. Oyster reefs included Pivers Island (PI), White Rock (WR) or White Rock 

Replacement (WRR), and Cross Rock (CR). Statistically significant (α=0.05) differences in 

species turnover across PI-WR/WRR, PI-CR, and WR/WRR-CR in the 1950s versus 2010s, 

based on Mann-Whitney U analyses, are indicated by asterisks. Sample sizes used for between-

reef comparisons are also provided. 

Figure 4. Multidecadal trends in annual mean, maximum, and minimum salinity across the 

Newport River Estuary, in the vicinity of: Pivers Island (PI); White Rock and White Rock 

Replacement (WR/WRR); and Cross Rock (CR) oyster reefs. For PI, sources included Hoyt 

(1920), Wells (1961), the North Carolina Division of Marine Fisheries Shellfish Sanitation 

(NCDMFSS) program, and the present study. For WR/WRR and CR, salinity data were 

sourced from Wells (1961), NCDMFSS, and the present study. In each panel, data are depicted 

as a scatterplot for annual means, with bars extending above and below mean values to 

represent annual maximum and minimum salinity records, respectively. For each reef, solid 

and dashed lines show the least-squares regressions for annual maximum and minimum values, 

respectively. 
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